A UTHOR	Byers, Frarces R.
TITLE	programming and systems Design for a classroom
	Information Feedback System.
INSTITOTION	Philadelphia School District, Pa.
PUB DATE	Apr 74
NOTE	11p.; Paper presented at the American Educational
	Research Association Annual Meeting (Chicago,
	Illinois, April 15 through 19, 1974)
EDRS PRICE	MF-\$0.75 HC-\$1.50 PLUS POSTAGE
DESCRIPTORS	Computer Oriented Programs; *Data Processing; *Desig
	Needs; Feedback; Information Needs; Programing;
	*Relevance (Information Retrieval) : Reports;
	*Teachers; *Test Results
I DENTIFIERS	Classroom Information reedback System

ABSTRACT

The primary outcome of any information feedback system must be data for the classroom teacher. for this reason, a system's value has to be measured in terms of its usefulness to the teacher in making instructional decisions. A report should contain only data that the teacher needs end should be produced in an understandable format. User feedback should be solicited to modify the report design. Adequate time should be allowed in the first production run for debugging. once the system is perfected, arrangements may be made with the data processing operations personnel to institute an automatic procedure which will prepare the input, run the job, and distribute the output. However, it is desirable to have someone familiar with the output to examine it for quirks before distribution. Some of the current productions of the office of Research and Evaluation of the School District of Philadelphia provide examples of useful teacher reports. One report, for the diagnosis of pupil performance, lists each pupil's answer to each test item, showing at a glance the student's strengths and weaknesses on a given test or subject. (Author/SL)

PROGRAMMING AND SYSTEMS DESIGN FOR A

 CLASSROOM INFORMATION FEFDBACK SYSTEMFrances R. Byers
Research Associate The School District of Philadelphia
US DEPARTMENT OF MEALTH
EOUCATION \& WELFARE
$\begin{aligned} & \text { NATIONALINSTITU } \\ & \text { EOUSATICN }\end{aligned}$
THIS DOCUNENT MAS BEEN PEPRO
DUCED EXSCILY AS RECEIVED FROM
THE OERSON OR ORGANIZATIONORIGIN
ATING IT POINTI OF VIEWOR OP:NIONS
ATING IT POINTS OF DE NOT NECESARSLY REPRE
SENTOFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSHIION OR POLICY

Paper presented at the American Educational Research Association Convention, Chlcago, April 1974.

PROGRAMMING AND SYSTEMS DESIGN FOR A CLASSROOM INFORMATION FEEDRACK SYSTEM

Frances R. Byers The School District of Philadelphia

The primary outcome of any Information feedbark system must be data for the classroom teacher. For this reason, a system's value has to be measured in terms of how useful it is in helping the teacher make instructional decisions about her pupils and thereby facilitate the educative process. If the element of usability (and its correlate, understandability) is lacking, the information provided (no matter how accurate or potentially valuable) will be shunted aside as just another plece of useless paper, handed down by "the administration," which will not help the teacher one lota in dealing with the problems she must confront each day in her classroom. Aside from being useful, an information feedback system must be efficient. If efficiency is lacking, the teacher receives the information too late to be of use in her instructional plans. She needs help in deciding how to place her pupils, in determining which topics she should stress to correct weakness in her pupils' skills, or in planning an effective sequence of topics for a newly-lmplemented course of study. Design of the System-Usability and Understandability

In order to determine what constitutes useful teacher information, a sincere effort must be made to find out what kinds of information the teachers actually desire. Although it seems almost tco obvious a requirement to mention, very of en computerized reports are fashioned in such a way that the user finds the information to have little immediate value. This happens particularly when "output" is produced for users other than the teacher (usually program or dis" trict administrators or others who require data such as summary statistics across classrooms or schools, data upon which to make policy decisions).

Therefore, care must be taken to provide only those data that teacher can ncturlly use: or staied differently, the sutput must be tailored to neet the needs of the user.

Once the conitent of a teacher's report is decided upon, the report must be produced in an understandable format. The terminology and data must be presented in a way both easy to comprehend and pleasing to look at. Wherever possible, English words or commonly understood abbreviations should be used instead of obstruse numerical codes. One way to insure communication is to receive affirmative answers to the following questions: Are the numbers (scores, ratings, category codes, etc.) presented so that their meaning is readily understood? Are the elements of data spaced sufficiently on the page so as to prevent confusion and/or eysstrain? (Sometimes a positive answer to these questions, cannot be assured until the next aspect in the development of the information system, described below, is carried out.)

Another way to promote usability is to recognize that systems design is not just a one-time thing. It involves an ongoing relationship between the systems designer and/or programmer and school/fleld representatives. The system's program (or series of programs) is actually being pllot-tested during its first production runs. It is being tested in the sense that, for that initlal perlod of time, the users of the system's product are getting acquainted with it and sensing what, for them, are the good and bad aspects of that product. They then should forward critical feedback to the systems designer as to how the product can be improved. One should be prepared to make whatever modifications are feasible and reasonabla. Implementation of the System-Efficiency

Initial production runs. In a way, this aspect may be the most frustrating In the entire sequence of a system's development. When a new progran is
developed, the operational deadine for its products is often close on the heel. of its developmental phase. This means that the program may not have had adequale testing and debugging prior to the time when it is called upon to produce reports. So the first several "production" runs are mass-data test runs durling which many unforesnen problems surface. Therefore, one should (1) plan to set aside sufficient time for full-scale testing as well as (2) allow for a greater "turnaround" period than would be scheduled for the regular system. Problems always occur so it is best to allow extra time for them. It is the very rare instance indeed when a system or even a single program encounters full success during its first production run(s).

Ongoing production runs. Once the system's programs are "perfected" to the point where major modifications are no longer needed, an arrangement should be made with the data processing operations personnel to institute an "automatic" procedure which will prepare the input, run the job, and distribute the output. Once in operation, the systems designer and/or programmer need only be called upon in an emergency situation. Even then, however, it is advisable to have someone famlliar with the output examine it before it is distributed to the schcols. Eveii with thoroughly detugged programs, unexpected quirks In the data (possibly produced by erroneous coding or keypunching) can produce unexpected quirks in the output. (So says the old maxim: Garbage in, Garbage out.) To maintaln the credibility of the system, such quirks should be spotted before distribution and accounted for, perhaps with a note of explanation to the offending user so that the same mistakes will be avoided in the future.

To summarize, the major points in the design of the system are:

1. Produce only the information needed.
2. Produce it in an understandable format.
3. Receive feedbark as to its acceptablity and suggestions for improvement.
4. Modify the system to conform with reasonable user suggestions. And the major polnts in the implementation of the system are:
5. Allow adequate testing time and simulate actual production runs as closely as possible.
6. Make appropriate arrangements for the regular running of the system program(s) with the personnel in the operations area of the data processing installation.
7. Arrange for the examination of the output before distribution so that "garbage" output is not allowed to be distributed without some indication as to the problem.

Some Examples of Useful Teacher Information Reports

Refer to Figures $I A, B, C$, and D for abbraviated examples of some teacher reports currently being produced by the Office of Research and Evaluation of The School District of Philadelphia.

The report displayed in Figure $1 A$ represents one of our most widely-used types of computer reports. Because the report is for the diagnosis of pupil performance, the computer program (in FORTRAN IV) has a number of features. Test items can be divided into subtests of varying length (as indicated on the pupil listing by the columns of stars following items 18, 27 and 31. One can see, in the legend in the upper left-hand corner of each page, that subtest 1 of the Sight and Sound Inventory, Form A, comprises items 1 to 18 , inftial consonants). Each pupil's total number-right score is listed on both pages of the class listing.
in addition, a listing is made of each pupil's answer to each item, abbreviated to one or two characters. For example, if a pupil answers an item correctly, $a^{\prime \prime}+1$ is printed; if he answers the Item incorrectly, the correct answer is printed. Therefore, the report helps the teacher tell at a qlance
(reading across the sheet) which items a glven child has answered correctly and incorrectly fylelding Information of a dlagnostic nature about the child's. strengths and weaknesses in the content covered by the test). It also qives the teacher information about (reading down the sheet) whlch items gave her puplis the most trouble (ylelding information of a curicular nature about what areas of the content need to recelve greater stress in instruction). Below the class listing, the teacher is given the number and percent of pupils in her class who answered each item correctly and the mean score for the class.

It should be noted that "subtest mastery" can be set before the program is run to indicate whether each exaninee has effectively mastered the content of each subtest. In the Figure IA example, mastery is defined as having no more than one incorrect response per subtest. (lhat is, at least 17 items must be correct out of 18 items in subtest one, eight correct out of nine in subtest two, and three correct out of four in subtest three.) A teacher can make both diagnostic and curricular judgments about how well her puplls mastered each subtest by looking arross and down, respectively. In addition, these class data are summar:zed as the number and percent of the class mastering each subtest (see bottcm entry).

In Figure 1B, a class listing for the expanded version of the Sight and Sound inventory, Form B, with six subtests as explained in the legend at the top, one can tell that the class as a whole had particular trouble with the short-E (SE) vowel sound (36 percent answering correctly) and the AW, 01 , and OU sounds (answered correctly ty 28,24 , and 32 percent, respectively). On the other hand, 80 percent of the class effectively mastered subtest two on digraphs, and 84 percent of the class effectively mastered subtest three on three-letter conbinations. Future instruction would focus brimarlly on the content covered by subtest five, long and short vowel sounds, because
only 44 percent mastered the 1 tems of that subtest, and subtest six, other vowel sounds, nastered by only 16 percent. On the diagnostic level, one can see that whlle at least 60 percent of the class mastered the first four subtests, pupils MAN and MIL need particular help in those arcas, and pupll HOD needs help in final sounds.

In Figure IC, a class listlng of the Secondary Group Heading Inventory, the items are divided into six subtests of (supposediy) increasing difficulty. (If such is the case, one may ask why only 23 percent of the class mastered the first level, but this question reflects on the qually of the test, not on the reporting system.) Here the items are indicated, not by their correct answer, but by their type: F for factual, V for vocabulary, and I for inferential. In subtest one, item 7, an inferential item, posed particular difficulty only seven percent of the examinees (one pupil) answered it correctly. The same is true for an increasing number of items in successive subtests, untll no one mastered the last two subtests. One can examine each pupll's performance to learn who needs what kind of help. At the third reading level (subtest 1), there are a number of puplls who need help even with factual or vocabulary items. Special instruction may be needed to supplement these puplls' skills in these areas.

In Figure ID, the Arlthmetic Concepts subtest of the lowa Tests of Basic Skills, is shown that the items agaln are designated by type $\mathbb{C} C$ for Currency, etc.), but an indication of subtest mastery is not produced. Interpretation of the report can still be made on an Item-by-item basis, as just described.

Although the program producing the above described reports has been in use for about two years, it has undergone several major modifications in response to teacher and supervisor requests. An example is the addition of the subtest mastery feature. Even now, In spite of the fact that its use is widespread and the teachers seem to use it enthuslastlcally, / have a list of at least a half-dozen suggested improve. ments which will be made in the near future.

SEMCL E CHAUE 1 CLASS IIS
 \qquad
\qquad
TEACHER=ODIN

 PCI- $-631166605463.653071123054816159729017545463656068 \quad 126861$
1t4, 2e293011

- mians the tiEm is correct

PUPit ANME

PUPIL RIAEE GIGHINO SX GHTHNKSHSTNO MPOLULE SU SA LO SUSI LA SEAAR IR AN OI OU AY OY OO.

い"......	-. 12.10 .1
---rif:abs	
r--..19ss	
	a..1: 1.04, es

\section*{

